Local Pressure of Confined Fluids inside Nanoslit Pores (a Density Functional Theory Prediction)

نویسندگان

  • Fatemeh Heidari
  • G. Ali Mansoori
  • Ezat Keshavarzi
چکیده

In this work, the local pressure of fluids confined inside nanoslit pores is predicted within the framework of the density functional theory. The Euler-Lagrange equation in the density functional theory of statistical mechanics is used to obtain the force balance equation which leads to a general equation to predict the local normal component of the pressure tensor. Our approach yields a general equation for predicting the normal pressure of confined fluids and it satisfies the exact bulk thermodynamics equation when the pore width approaches infinity. As two basic examples, we report the solution of the general equation for hard-sphere (HS) and Lennard-Jones (LJ) fluids confined between two parallel-structureless hard walls. To do so, we use the modified fundamental measure theory (mFMT) to obtain the normal pressure for hard-sphere confined fluid and mFMT incorporated with the Rosenfeld perturbative DFT for the LJ fluid. Effects of different variables including pore width, bulk density and temperature on the behavior of normal pressure are studied and reported. Our predicted results show that in both HS and LJ cases the confined fluids normal pressure has an oscillatory behavior and the number of oscillations increases with bulk density and temperature. The oscillations also become broad and smooth with pore width at a constant temperature and bulk density. In comparison with the HS confined fluid, the values of normal pressure for the LJ confined fluid as well as its oscillations at all distances from the walls are less profound.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attractive energy contribution to nanoconfined fluids behavior: the normal pressure tensor

The aim of our research is to demonstrate the role of attractive intermolecular potential energy on normal pressure tensor of confined molecular fluids inside nanoslit pores of two structureless purely repulsive parallel walls in xy plane at z = 0 and z = H, in equilibrium with a bulk homogeneous fluid at the same temperature and at a uniform density. To achieve this we have derived the perturb...

متن کامل

Behavior of Confined Fluids in Nanoslit Pores: The Normal Pressure Tensor

The aim of our research is to develop a theory, which can predict the behavior of confined fluids in nanoslit pores. The nanoslit pores studied in this work consist of two structureless and parallel walls in the xy plane located at 0 = z and H z = , in equilibrium with a bulk homogeneous fluid at the same temperature and at a given uniform bulk density. We have derived the following general equ...

متن کامل

Behavior of the Confined Hard-sphere Fluid within Nanoslits: a Fundamental-measure Density-functional Theory Study

A property of central interest for theoretical study of nanoconfined fluids is the density distribution of molecules. The density profile of the hard-sphere fluids confined within nanoslit pores is a key quantity for understanding the configurational behavior of confined real molecules. In this report, we produce the density profile of the hard-sphere fluid confined within nanoslit pores using ...

متن کامل

THE DENSITY PROFILES OF A LENNARD -JONES FLUID CONFINED TO A SLIT

The structure of fluids confined by planar walls is studied using density functional theory. The density functional used is a generalized form of the hypernetted chain (HNC) functional which contains a term third order in the density. This term is chosen to ensure that the modified density functional gives the correct bulk pressure. The proposed density functional applied to a Lennard-Jones...

متن کامل

Density and Polarization Profiles of Dipolar Hard Ellipsoids Confined between Hard Walls: A Density Functional Theory Approach

The density and polarization profiles of the dipolar hard ellipsoids confined between hard walls are studied using the density functional theory (DFT). The Hyper-Netted Chain (HNC) approximation is used to write excess grand potential of the system with respect to the bulk value. The number density is expanded up to zero and first order in polarization to find the results. For the zero order in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014